On a result related to transformations and summations of generalized hypergeometric series

نویسندگان

  • Allen Richard Miller
  • Richard Bruce Paris
چکیده

We deduce an explicit representation for the coefficients in a finite expansion of a certain class of generalized hypergeometric functions that contain multiple pairs of numeratorial and denominatorial parameters differing by positive integers. The expansion alluded to is given in terms of these coefficients and hypergeometric functions of lower order. Applications to Euler and Kummer-type transformations of a subclass of the generalized hypergeometric functions mentioned above together with an extension of the KarlssonMinton summation formula are provided. AMS subject classifications: 33C20

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Summations and Transformations for Multiple Basic and Elliptic Hypergeometric Series by Determinant Evaluations

Abstract. Using multiple q-integrals and a determinant evaluation, we establish a multivariable extension of Bailey’s nonterminating 10φ9 transformation. From this result, we deduce new multivariable terminating 10φ9 transformations, 8φ7 summations and other identities. We also use similar methods to derive new multivariable 1ψ1 and 6ψ6 summations. Some of our results are extended to the case o...

متن کامل

ON AN EXTENSION OF A QUADRATIC TRANSFORMATION FORMULA DUE TO GAUSS

The aim of this research note is to prove the following new transformation formula begin{equation*} (1-x)^{-2a},_{3}F_{2}left[begin{array}{ccccc} a, & a+frac{1}{2}, & d+1 & & \ & & & ; & -frac{4x}{(1-x)^{2}} \ & c+1, & d & & end{array}right] \ =,_{4}F_{3}left[begin{array}{cccccc} 2a, & 2a-c, & a-A+1, & a+A+1 & & \ & & & & ; & -x \ & c+1, & a-A, & a+A & & end{array} right], end{equation*} wher...

متن کامل

Gustafson–Rakha-Type Elliptic Hypergeometric Series

We prove a multivariable elliptic extension of Jackson’s summation formula conjectured by Spiridonov. The trigonometric limit case of this result is due to Gustafson and Rakha. As applications, we obtain two further multivariable elliptic Jackson summations and two multivariable elliptic Bailey transformations. The latter four results are all new even in the trigonometric case.

متن کامل

Noncommutative Extensions of Ramanujan’s 1ψ1 Summation ∗

Using functional equations, we derive noncommutative extensions of Ramanujan's 1 ψ 1 summation. 1. Introduction. Hypergeometric series with noncommutative parameters and argument, in the special case involving square matrices, have been the subject of recent study, see e.g. the papers by Duval and Ovsienko [DO], Grünbaum [G], Tirao [T], and some of the references mentioned therein. Of course, t...

متن کامل

Elliptic Hypergeometric Summations by Taylor Series Expansion and Interpolation

We use elliptic Taylor series expansions and interpolation to deduce a number of summations for elliptic hypergeometric series. We extend to the well-poised elliptic case results that in the q-case have previously been obtained by Cooper and by Ismail and Stanton. We also provide identities involving S. Bhargava’s cubic theta functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012